Effect of offset-frequency step size and interpolation methods on chemical exchange saturation transfer MRI computation in human brain.

Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India. CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania. Fortis Memorial Research Institute, Gurugram, Delhi, India. All India Institute of Medical Science, Delhi, India.

NMR in biomedicine. 2021;(4):e4468
Full text from:

Abstract

Chemical exchange saturation transfer (CEST) MRI is a non-invasive molecular imaging technique with potential applications in pre-clinical and clinical studies. Applications of amide proton transfer-weighted (APT-w), glutamate-weighted (Glu-w) and creatine-weighted (Cr-w) CEST, among others, have been reported. In general, CEST data are acquired at multiple offset-frequencies. In reported studies, different offset-frequency step sizes and interpolation methods have been used during B0 inhomogeneity correction of data. The objective of the current study was to evaluate the effects of different step sizes and interpolation methods on CEST value computation. In the current study, simulation (Glu-w, Cr-w and APT-w) and experimental data from the brain were used. Experimental CEST data (Glu-w) were acquired from human volunteers at 7 T and brain tumor patients (APT-w) at 3 T. During B0 inhomogeneity correction, different interpolation methods (polynomial [degree-1, 2 and 3], cubic-Hermite, cubic-spline and smoothing-spline) were compared. CEST values were computed using asymmetry analysis. The effects of different step sizes and interpolation methods were evaluated using coefficient of variation (CV), normalized mean square error (nMSE) and coefficient of correlation parameters. Additionally, an optimum interpolation method for APT-w values was selected based upon fitting accuracy, T-test, receiver operating characteristic analysis, and its diagnostic performance in differentiating low-grade and high-grade tumors. CV and nMSE increase with an increase in step size irrespective of the interpolation method (except for cubic-Hermite and cubic-spline). The nMSE of Cr-w and Glu-w CEST values were least for polynomial (degree-2 and 3). The quality of Glu-w CEST maps became coarse with the increase in step size. There was a significant difference (P < .05) between low-grade and high-grade tumors using polynomial interpolation (degree-1, 2 and 3); however, linear interpolation outperforms other methods for APT-w data, providing the highest sensitivity and specificity. In conclusion, depending upon the saturation parameters and field strength, optimization of step size and interpolation should be carried out for different CEST metabolites/molecules. Glu-w, Cr-w and APT-w CEST data should be acquired with a step size of between 0.2 and 0.3 ppm. For B0 inhomogeneity correction, polynomial (degree-2) should be used for Glu-w and Cr-w CEST data at 7 T and linear interpolation should be used for APT-w data at 3 T for a limited frequency range.